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Ab initio cluster calculations of defects in solids

By R.JoxNEs
Department of Physics, University of Exeter, Exeter EX4 4QL, UK.

A method based on local density functional theory is described which leads to the
rapid determination of the structure, vibrational and electronic properties of clusters
as large as 100-150 atoms. The technique is particularly suitable for molecular solids,
covalently bonded materials where the clusters are terminated by hydrogen, and to
ionic systems where the termination consists of a set of distributed charges. The
strengths and weaknesses of the method are detailed together with an application to
the interstitial carbon—oxygen complex in silicon where oxygen is found to be over-
coordinated. The good agreement obtained for the vibrational modes of the complex
lends support to the unusual structure found.
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1. Introduction

The determination of the properties of defects in solids —and I have in mind
complicated defects like dislocations and impurity aggregates —poses severe
problems. First, one needs to be able to describe correctly the charge distribution
around each atom and to evaluate the force acting on it. Thus a method of solving
the many body Schrédinger equation is required. The two standard methods:
Hartree-Fock (HF) and local density functional (LDF) theories (Lundqvist & March
1986 ; Thm 1988) are not devoid of approximations and assumptions but they have
been found to be particularly useful for ground state molecular and crystalline
structures. Kach is a variational procedure with HF theory assuming the wave-
function, which is dependent on the coordinates of all the electrons, as the variational
variable whereas LDF theory takes it to be the charge density : a function of just three
coordinates (in the spin-polarized version, the variational variables include the
magnetization density). Both theories can be written in terms of single particle
Schrodinger equations with the potential acting on a electron arising from an effective
field due to all the others. Thus both require a self-consistent equation to be solved.
However, there are important differences; especially in the treatment of exchange
and correlation. HF theory ignores the latter and its inclusion via say Méller—Plesset
perturbation theory is unwieldy. For metallic systems correlation is essential and for
this reason HF methods have primarily been used in insulators. LbF theory includes
a correlation term derived from the homogeneous electron gas but its utility in multi-
atomic systems where the charge density varies rapidly is well proven. The exchange
energy in HF theory is a four-centre integral and its evaluation requires the
computation of O(N?) integrals, where NV is the basis size. This is to be contrasted with
LDF theory whose exchange-correlation energy is an integral of a function of the
electron density n(r) and its evaluation requires O(lV2M) computations where M is the
number of points or operations involved in estimating this integral. In many
applications this scales as N or the cluster size. We should say that this applies to
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352 R. Jones

clusters of about 100 atoms, where typically each basis function has some overlap
with almost all the others. Thus we expect LDF theory to be about NV times faster than
HF and for typical values of N around 500 to 1000, this makes HF theory slower for
large systems. Nevertheless, the latter theory has been used with some success for
large systems (Maric ef al. 1989; Nada ef al. 1990).

A second reason for preferring LDF over HF theory is that for many purposes it is
only the valence electrons that are important in chemical bonding. The development
of pseudopotentials (Bachelet et al. 1982; Yin & Cohen 1982) eliminating the need to
include core electrons has been successfully accomplished in the case of LpF theory.
The total electron density is composed of two parts: a core density which is the sum
of contributions from different atomic cores and is large near each atom but falls off
rapidly to zero, and the valence charge density which although varying rapidly near
the core (because of the constraints imposed by orthogonalization) is relatively
smooth around the centres of chemical bonds. The pseudo-atoms have no core states
and thus their ‘valence’ electrons experience a repulsive potential leading to a small
and slowly varying charge density in the core region. In the frozen-core
approximation, the exchange-correlation energy for the pseudo-atom is then
determined by this valence charge density alone. This is of great significance for it is
a difficult task to construct a basis set for both the core and valence wave-functions
as each of these quantities has a different domain of importance and scale of
variation. The result is that it is of no greater difficulty in treating say GeO, than
Si0,.

The nature of the exchange energy in HF theory involving the product of four
orbital functions some of which may be core ones has made it more difficult to
develop reliable pseudopotentials. Thus the most efficient way of treating defects in
semiconductors may well be based on LDF theory incorporating pseudopotentials and
thereby eliminating core electrons. However, some quantities dependent on the core
wave-functions, such as chemical shifts, may not then be calculable. This is not
always the case as Van de Walle (1990) finds good agreement for the relative
hyperfine and super-hyperfine parameters (quantities depending on the wave-
function near the nucleus) for H in Si.

Finally, one requires an efficient method of solving the Schrédinger equation and,
in addition, it is essential to be able to calculate the forces acting on individual atoms
and allow the positions of these to adjust until an equilibrium structure is found.

There appear to be three methods: first, the Green function method (Baraff &
Schliiter 1983) which is the most rigorous one for point defects. Much effort is
expended on the evaluation of the host lattice Green function, more elements of
which are required when the size of the defect increases. Second, the supercell method
which uses a basis of plane-waves together with the molecular dynamical method of
Car & Parrinello (1984) and seems ideal for many problems. There are difficulties for
certain elements, e.g. O, F and transition ones, due to the lack of p or d core electrons
as this makes the valence wave-functions vary rapidly near the cores with the
consequence that one requires an extremely large number of plane-waves. A second
difficulty is that for certain defects, e.g. partial dislocations in semiconductors, it is
necessary for topological reasons to construct unit cells containing dislocation
dipoles. The present limitation of unit cell size causes the dislocations to lie
unsatisfactorily close together. In other systems such as zeolites or proteins where
the unit cells contain hundreds or even thousands of atoms it may not be easy to
construct a sufficiently small cell for computational purposes. The third method is
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Ab initio cluster calculations of defects in solids 353

based on atomic clusters. The essential problem here is to passivate the surface of the
cluster in such a way that properties of the inner part are insensitive to the
termination. For non-metallic solids this requires a surface without gap states whose
charging would draw charge from the inner part of the cluster. This would affect the
properties of the inner atoms. A practical way of doing this is to passivate surface
dangling bonds of covalently bonded materials with hydrogen. Moreover it is
important to choose a short H-surface length as this depresses the H-bonding states
below the bulk valence band top and elevates the H-antibonding states to above the
bulk conduction band. However, since the host feels a repulsive potential from the
surface H atoms, its valence and conduction bands are also depressed and elevated
respectively resulting in an increased band gap. This effect of H in increasing the
band gap is realized in a-Si: H and, possibly, porous Si. However, it seems that this
band gap widening does not significantly affect structural or vibrational properties,
although it does lead to defect levels lying deeper in the gap than observed. It is
known that small H-terminated molecules have structures and vibratory modes close
to those of the bulk. For example, neopentane C,H,, has a bond length within 1%
of diamond whereas disiloxane, (SiH;),0, has an Si—O length of 0.1634 nm and
vibratory modes at 1107 and 606 cm™, which lie close to those of interstitial oxygen
in Si: 0.16 nm, 1136 and 515 cm™! (Stavola 1984). The termination must be different
for ionic systems and here a distribution of fixed charges has been used to surround
the cluster.

I shall describe the cluster method that I have developed in more detail in the next
section. Note here that several other workers have also developed cluster LDF
methods (Pederson & Jackson 1990) but not incorporating pseudopotentials. I
shall give what I see as the strengths and weaknesses of the method in §3 and an
application in §4. Before this I make some remarks on approximate methods. These
are like CNDO, MNDO, PRDDO or the tight binding scheme where approximations to the
HF or LDF theories are made at the outset. Very often these include empirical
information and, provided that the bonding is properly described, give these
methods a wide domain of applicability and usefulness. In particular they can give
stretch frequencies systematically higher than those observed and this is a very useful
result.

2. The LDF cluster method

The total energy of the cluster is given by the minimum of
B = Eke+Ee-p+EH +Exc +Ei-i'

Here B\, E, ,, By, E,,, and E, ; are the kinetic, electron—pseudopotential, Hartree,
exchange-correlation and ion—ion energies respectively. The charge density n(r) is
written in terms of the wave-functions, ¥,(r), of occupied states, each of which is
expanded in a basis set ¢,(r) of localized orbitals.

It is then necessary to vary the coefficients in the wave-functions in order to
minimize £ subject to the usual constraint that the total number of electrons is fixed.
This is achieved by writing Euler—Lagrange equations for these coefficients. These
equations can be cast in a matrix form involving integrals over the basis functions.
We have, for the A wave-function:

!”A(") = ZC? ¢i(r)’

Phil. Trans. R. Soc. Lond. A (1992)
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354 R. Jones

and the set of ¢} which minimize £, subject to the constraint that the cluster contains
the correct number of electrons, satisfy (Jones & Sayyash 1986):

J

Here KE,; V7, Vi, w.; and S, are the matrix elements for the kinetic,
pseudopotential, Hartree and exchange-correlation potentials and overlap
respectively.

Gaussian basis functions have the advantage that all the required integrals can be
analytically performed. It is trivial to evaluate the integrals involving the kinetic
energy, and the pseudopotential ; especially if one uses those given by Bachelet et al.
(1982). This leaves the two troublesome terms: the Hartree energy, Ky, and the

exchange-correlation energy, £, . where

1 falr) iy
EH‘zf r—ry CT1dre

and E. = Jexc(n) ndr,

where ¢, is the exchange-correlation energy density.

For large systems it is not possible to treat these terms exactly. Consequently some
approximation must be used. It is important that the approximations used in
evaluating By and E,, are consistent with those in the Hartree and exchange-
correlation potentials otherwise the self-consistent density would not be the one that
minimizes the total energy.

To achieve this we replace £y and E, . with approximate expressions B and B,
(Jones & Sayyash 1986; Jones 1988). Here

~ n(ry) 7(r,) 1 [7(ry) 7(ry)
B, = |22V V2 g dp, —= | YV 2 qp dr
. |"1_rzl 2 |r1~r2| e
and B .= Jexc(ﬁ) wdr.

It is clear that these expressions are exact when # = n.
We define the approximate density 7(¥) in terms of basis functions g,(r) by

A(F) = 2, G5(F).
k

It is most sensible to choose the coefficients ¢, by requiring the difference between &,
and E to be as small as possible (Dunlap et al. 1979). This difference can be written
as

lj(n(71)—ﬁ(rl))("(rz)"ﬁ(rz))dr dr..

2 |I‘1—l’2|

Then the coefficients ¢, are chosen to minimize this expression. In practice we choose
some ¢, to be the functions (1 —2a, (r—R;)?)exp (—a,(r—R,)?) and others just s-
gaussians centred at R,. The point about the first set is that they give a potential
which is just (2n/(3a;)) exp(—a,(r—R;)%) and thus the matrix elements 17{{] are
trivial to compute (Jones 1989). Since, however, each of the first set of functions
integrates to zero it is essential to include some functions of the second type. The sites

R, are taken to lie at both atomic and bond centres.

Phil. Trans. R. Soc. Lond. A (1992)
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Ab initio cluster calculations of defects in solids 355

To evaluate A, , we use
Exc = Z Cr fgk(r) 6xc(’ﬁ’) dr
k

and estimate the integrals using the first few moments of # over g,. We do not need
to use the same coefficients ¢, and functions g, for # and instead use a least squares
fit to » using simple gaussian functions.

The key remark is then that the Euler—Lagrange equations for the wave-function
are then derived from minimising this approximate energy expression. Thus the self-
consistent density is necessarily the one giving the lowest energy £. This would not
be the case if one used different approximations to evaluate say £y and the matrix
elements of the electrostatic potential V¥. Another advantage of the formulation in
terms of analytic integrals is that the energy enjoys the full point group symmetry
of the cluster which is not necessarily the case if the matrix elements were evaluated
by a numerical integration over a cartesian mesh.

The above formulation allows the forces to be calculated semi-analytically using
the Hellmann—Feynman theorem and numerical estimates of all the derivatives. It is
important, however, to include the derivatives of the basis functions.

We have used basis sets of s and p gaussian orbitals although code has recently
been written which extends these to any polynomial multiplied by a gaussian
function. The second derivatives of the energy can also be calculated and used to
obtain the vibrational modes of defects (Jones et al. 1991).

3. The strengths and weaknesses of the cluster method

For solid state problems there are a number of cases where cluster theory gives
useful information but, in others, it is seriously unreliable.

For molecular solids, i.e. those composed of largely non-polar molecules like zero-
dimensional phosphorous—selenide glasses (Jones & Lister 1989) or the fullerenes
(Jones et al. 1992), the method is ideal as it can concentrate on the properties of the
isolated molecules. This could also be true for polymers or liquid crystals. For
covalently bonded solids or defects within them, it appears that H-termination is an
extremely effective means of passivating the surface. The result is that structural and
the higher phonon branches are well described. The lower modes and the elastic
constants require longer ranged interactions (Kunc 1985) and so are more difficult to
describe with the theory. The cohesive energy of the solid is also much more difficult
to obtain because the basis can often be incomplete and because of the presence of
the H atoms. The electronic gaps are, as stated above, much larger than they should
be as it is well known that LDF theory leads to gaps smaller than those observed.

For point defects such as impurities or impurity aggregates, the method
successfully gives structures in agreement with other LDF calculations (Jones 1989)
but in addition the local modes of vibration of light impurities are reasonably well
described. The migration or reorientation energy within the cluster can also be found
such as for O in Si (Jones et al. 1991). The relative energies of H in various positions
of the Si lattice agree well with other LDF calculations (Briddon & Jones 1990) but
bond energies are usually too large. Recent work has focused on dislocations and
their interaction with impurities (Heggie et al. 1992).

Graphite, a layered material, can also be treated with H atoms terminating layers
of carbon atoms. Both interplanar and intraplanar lengths are determined to within
a few percent of the observed values (C. D. Latham, personal communication).

Phil. Trans. R. Soc. Lond. A (1992)
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356 R. Jones
Table 1. Frequencies (in ecm™) of local modes of C—0;
12CIGO2SSi IZCIBOZBSi 1301602SSi 14Cl60288i 1201603OSi
calculated
1141 1140 1101 1067 1136
925 925 898 874 917
625 624 624 624 604
604 598 604 604 589
565 562 564 564 550
559 558 558 558 541
observed
1115.5 11155 1078.3 1047
865.2 865.2 841.8 819.2
742
586 (72.6 meV) 582 586 586 576
550
528 (65.5 meV) 523 528 528

For H-bonded systems like ice, recent work (Heggie et al. 1992) indicates that the
O-H distance between atoms belonging to different water molecules decreases with
the cluster size as expected. This is an exciting discovery since it shows that the
method may be applicable to biochemically important materials.

For silicates like quartz, the method gives excellent Si-O lengths and Si-O-Si,
0-Si-O angles and the energy derivatives of distorted clusters can be used to fit
classical potentials such as those of the Catlow—Sanders form. Thus has given very
encouraging results for the properties of quartz under pressure (J. Purton, R. Jones,
C. R. A. Catlow & M. Leslie, unpublished results). Ionic solids are best treated with
a termination consisting of charge distributed around sites outside the cluster. For
NaCl, MgO and AL,O, the bond lengths are given to within few percent.

Thus there are a wide range of materials and their properties that can be explored
using the cluster method.

The computationally most intensive routines are those involved in evaluating the
three centred integrals but it is these which are most easy to vectorize and parallelize.
Consequently, it is possible to relax an inner set of say 17 atoms of a 70 atom cluster
in about three CPU days on an IBM RS6000 work station and evaluate the necessary
second derivatives in about the same amount of time. This represents nowadays a
modest computational requirement.

The ability to compute the forces on the atoms near the defect and to move them
until equilibrium prevails has given in several cases quite unexpected results. It is
these cases that are of the greatest interest for they show that our intuition has led
us astray and this might then suggest a resolution of some long standing problem. I
next describe an example of this sort which has given quite unexpected results.

4. Application to the interstitial carbon—oxygen defect in silicon

This is a complicated but important defect as it is one of the dominant defects
produced in electron irradiated Si which contains C and O impurities. The defect is
known to contain one O and C atom and its vibrational modes (Davies et al. 1986)
are given in table 1. What is surprising is that the highest mode at 1115 em™ is
unaffected by '*0O doping quite unlike bond centred interstitial oxygen (Newman
1973).

Phil. Trans. R. Soc. Lond. A (1992)
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3

(P O

{100]
[o01]

[010] 8

Figure 1. Schematic arrangement of atoms in the C, split-interstitial. The small circle denotes a C
atom. Note the dangling bonds on C and the central Si atom.

[100]
[o01]

[0io]
Figure 2. Schematic arrangement of atoms in C;~0, complex. The small circle represents the C atom
and the large one the over-coordinated O atom.

Magnetic resonance experiments (Trombetta & Watkins 1987) showed that the
structure of the defect must be closely related to that of the C split-interstitial
(Watkins & Brower 1976) illustrated in figure 1, and they suggested that the C atom
has a filled dangling bond parallel to, say [011], and is bonded to a Si atom with an
empty dangling bond nearly parallel to [011], with O occupying a bond centred
location between atoms 3 and 4 of figure 1. Now this model would assign the
1115 em™ mode to an O stretch mode which is inconsistent with the insensitivity of
this mode to 0 substitution.

The LDF cluster calculations (Jones & Oberg 1992) revealed very unusual bonding
in the defect. The C, O and 17 Si atoms of a 73 atom H-terminated cluster COSiz H,,
centred on the Trombetta—Watkins model of the defect were relaxed. We found that
the O-atom moved away from the bond centred position towards the middle of the
quadrilateral (in the (011) plane) formed by atoms 1, 2, 3 and 4 in figure 2. The reason
is that the Si dangling bond has an empty level lying above that of C. It can lower
the energy of one set of lone pair electrons on O (atom 5) by forming a dative bond
and pulling O towards it. Consequently O becomes over-coordinated. This model
explains why O prefers to bind to the defect in the same plane as the Si dangling
bond.

The vibrational modes of O are expected to be low lying because of the very long

Phil. Trans. R. Soc. Lond. A (1992)
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Si-O lengths (ca. 0.185 nm) present in the over-coordinated O defect. The energy
second derivatives between the atoms 1 to 8 in figure 2 were calculated and inserted
into the dynamical matrix. The calculated frequencies of the six highest modes of
C;—0; and their isotopic shifts are given in table 1.

The absolute values of the frequencies are within about 100 em™ of the observed
ones but their isotopic shifts are given very well. This strongly suggests that the
structure found here is the correct one.

To conclude, the calculations showed that interstitial O is unstable when close to
a Si dangling bond and readily forms an over-coordinated defect with rather long
Si—0 bonds and low lying Si~O stretch modes. This is of interest to the more complex
problem of O precipitation where Si interstitials might rise from the precipitation
process and interact with other O complexes. Presumably some weak or broken
bonds will be formed in these processes. These may well be attacked by O and form
over-coordinated defects with low lying vibrational modes. I point out that no
high frequency O related modes have been found for the thermal donor and it is
tempting to speculate that this may be because the O atoms in that case are also
over coordinated. There have been models of thermal donors along these lines (Chadi
1990; Jones 1990; Deak et al. 1991).

5. Conclusions

I have shown in this paper that the cluster L.DF method can reveal the structure
and electronic properties of a wide range of solids and especially their defects. The
calculations have in several cases given surprising and unexpected results which may
—and often does — explain some interesting phenomena. I believe that the method
can be profitably used for a variety of defects and defect processes in many materials
and enjoys a considerable advantage, for a first-principles one, in that it requires only
a moderately significant computational effort.

It is a pleasure to acknowledge helpful discussions with a large number of colleagues. Special thanks
are owed to P.R.Briddon, M.I. Heggie, G.M.S. Lister, C. D. Latham, S. Maynard, R.C.
Newman, S. Oberg, M. Stoneham, V. Torres and A. Umerski.
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Discussion

P. C. H. MrrcaELL (Department of Chemistry, The University, Whiteknights, Reading
RG6 24D, U.K.): An impressive feature of your ab initio calculations is that they
reveal the probable presence of three-coordinate oxygen at a defect site. There are a
number of classic neutral molecular complexes having over-coordinate oxygen, e.g.
basic beryllium and basic zinc acetate; M,0(0,C.CH,),, (M = Be,Zn). In these
structures a four-coordinate oxygen atom, at the centre of a tetrahedron of four
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metal atoms, forms a bond to each metal atom. The two oxygen atoms of each
acetate bind to two different zinc atoms; the acetates thereby act as bridging groups
along each edge of the tetrahedron of metal atoms. These structures would seem to
offer an excellent means of testing out the computational procedure with well-
characterized neutral molecules.

R. Joxgs: This suggestion is a good one and one I would like to follow-up.
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